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We report the results of an experimental study of flow in a Taylor-Couette system 
where the usual circular outer cylinder is replaced by one with a square cross-section. 
The objective is to determine the validity of low-dimensional dynamical systems as a 
descriptive framework for flows in a domain without the special continuous symmetry 
of the original problem. We focus on a restricted version of the flow, where the steady 
flow consists of a single cell, thereby minimizing the multiplicity of solutions. The 
steady-state bifurcation structure is found to be qualitatively unchanged from that of 
the standard system. A complex but self-consistent bifurcation structure is uncovered 
for time-dependent flows," culminating in observations of dynamics similar to those 
of the finite-dimensional Sil'nikov mechanism. Such behaviour has been observed in 
the standard system with continuous azimuthal symmetry. The present results extend 
the range of closed-flow problems where there is an apparent connection between 
the infinite-dimensional Navier-Stokes equations and finite-dimensional dynamical 
systems. 

1. Introduction 
There has recently been much progress in understanding certain complicated fluid 

flow phenomena by using ideas which originate from the study of low-dimensional 
nonlinear dynamical models. Examples have been found of transitions from regular to 
irregular flow behaviour which occur by means of simple deterministic mechanisms. 
Also, detailed studies have revealed the presence in fluid flows of chaotic dynamics 
with well-defined low-dimensional structure in phase-space. 

One area where such ideas have proved especially relevant is Taylor-Couette flow 
between concentric rotating cylinders. A recent review by Mullin (1993) contains many 
examples of the significant occurrences of low-dimensional dynamical behaviour in 
this problem. The basic geometry of the Taylor-Couette system is that of two 
concentric circular cylinders with a fluid in the separating gap. The fluid is driven 
round by rotation of the inner cylinder at a constant angular speed. By varying this 
speed systematically, a series of distinct transitions can be observed. Firstly, there is 
a mutation from uniform shear flow to steady axisymmetric cells (known as Taylor 
vortices) as the result of centrifugal instability. These steady cells subsequently become 
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unstable to travelling waves which propagate around the annular domain. With 
further increase of the cylinder speed, the travelling waves first develop modulation. 
Then, with the appearance of other frequency components, a state is reached which 
is temporally aperiodic but retains the overall spatial structure of the Taylor vortices. 
A review of some of the sequences which are observed is given by DiPrima & 
Swinney (1981). 

An alternative approach to the problem is to include the height of the annulus 
as a variable parameter in addition to the speed of the cylinder. It is then possible 
to follow the loci of these and other critical transitions in parameter space. Such 
an approach is insightful when allied with the formalism of nonlinear dynamics 
and bifurcation theory, since it is then possible to identify the origin of apparently 
complicated behaviour with the interaction between much simpler events. 

Despite the success of using ideas from low-dimensional models to understand 
the behaviour observed in the Taylor-Couette problem, it is not clear that such an 
approach is appropriate for more general systems in fluid dynamics. This may be 
attributed to the fact that the Taylor-Couette system embodies a high degree of 
geometrical symmetry. Typically, the vertical extent of the flow domain is determined 
by either two stationary or two rotating end-plates. Thus there is mirror symmetry 
about the horizontal mid-plane of the system, represented formally by a discrete 2 2  

symmetry group. More significantly as far as time-dependent flows are concerned, 
there is continuous azimuthal symmetry around the annular domain. This results 
in the presence of a continuous SO(2) symmetry group in the problem. Such a 
condition makes possible the existence of the travelling waves which are observed in 
the sequence of transitions leading to irregular flow (see Crawford et al. 1991 for a 
fuller discussion of the role of symmetries in bifurcation problems). The fact that 
most fluid dynamics problems do not have such a well-defined regular state in their 
solution structures can be attributed to the fact that they rarely possess the degree 
of symmetry found in the Taylor-Couette problem. Likewise, it is possible that 
the detailed bifurcation sequences which provide the underlying finite-dimensional 
mechanisms are not to be found in other flows. 

The approach which is adopted in this study consists of modifying the geometry 
of the Taylor-Couette problem by replacing the outer circular cylinder with one of 
square cross-section. Thus, there is no longer an axisymmetric domain, but rather 
one with a discrete Z4 symmetry azimuthally, and still the 2 2  midplane reflectional 
symmetry. A sketch of this square variant of the Taylor-Couette system is shown in 
figure l(a ,b ). 

Such a square system has been used in previous experimental studies. Snyder (1968) 
established that steady cellular flows, similar to Taylor vortex flow, exist in the square 
system for sufficiently high Reynolds number. Mullin, Lorenzen & Pfister (1983) 
made a preliminary study of time-dependent flows with Z4 azimuthal symmetry. 
They observed that the steady cellular flow becomes unstable to a singly periodic 
mode as the Reynolds number is increased. However, unlike in the standard Taylor- 
Couette system, this mode is not a simple travelling wave but is a more complicated 
motion of the cells. Further increase of the Reynolds number leads to a side-band 
instability and then to temporally non-periodic flow. Significantly, this final state 
was observed by Mullin et al. to be devoid of any spatial structure. This is in 
marked contrast to the flow in the standard system, where the cellular structure is 
found to persist well into the turbulent regime (Smith & Townsend 1982). The first 
detailed bifurcation study of flows in the square Taylor-Couette system was carried 
out by Mullin & Lorenzen (1985). They investigated experimentally the mechanism 
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FIGURE 1. Schematic diagram showing the geometry of the square Taylor-Couette system: 
( a )  plan view; ( b )  perspective view. 

for exchange between the time-independent four-cell and six-cell primary modes. The 
general exchange mechanism for the case of the standard system, first proposed by 
Benjamin (1978), is now well understood, and the reader is directed to the review by 
Cliffe, Kobine & Mullin (1992) for details. Mullin & Lorenzen uncovered a similar 
mechanism in the square system, involving secondary modes which are disconnected 
from a primary mode. However, it was found that the exchange procedure was 
obscured to a certain extent by the presence of time-dependent modes. 

In all three of the above studies, the vertical extent of the flow domain was 
sufficiently large to allow there to be several cells present in the flow. However, it is 
known from the work of Benjamin & Mullin (1981) on the standard Taylor-Couette 
system that the solution structure associated with the flow comprising a single cell 
differs quite substantially from the case of several cells. In particular, it is the case 
that the single-cell solution remains connected to the primary mode, whereas all other 
odd-numbered cellular flows are always disconnected solutions. 

In this present study, we choose to focus on the single-cell flow which exists in the 
square Taylor-Couette system. This is done by restricting the vertical extent of the 
domain to the order of the gap between the two cylinders. The objective is two-fold. 
Firstly, it is necessary to establish whether the steady-state bifurcation structure for 
the standard single-cell flow is structurally stable under the change to Z4 azimuthal 
symmetry. This being the case, the fact that there is a minimum of multiplicity in 
the solution set of single-cell flow means that it is an ideal vehicle for investigating 
detailed bifurcation phenomena which would otherwise be obscured by a plethora 
of neighbouring solutions. Therefore, secondly, we seek to determine whether any 
of the low-dimensional dynamic phenomena which are found under conditions of 
continuous SO(2)  azimuthal symmetry can be observed for discrete 2 4  symmetry. 
Only if this is the case can we begin to be confident in the applicability of ideas from 
low-dimensional dynamical systems to a wider class of closed-flow problems. 

The remainder of this paper proceeds as follows. In $2, there is a description 
of the apparatus and measuring techniques which were used in the study. The 
experimental results for steady single-cell flow are presented in $ 3 ,  together with 
a comparison with similar features in the standard system. The time-dependent 
flows are introduced in $4, and this is followed in $ 5  by results which show the 
regular dynamics to be organized by a structure of low-dimensional bifurcations. 
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More complicated dynamical phenomena are considered in Q 6, culminating in the 
observation of behaviour similar to that of the finite-dimensional Sil'nikov mechanism. 
Finally, conclusions are drawn in 0 7. 

2. Experimental details 
In this section, a description is given of the apparatus and the measuring techniques 

which were employed. The outer cylinder of the flow rig was constructed from four 
uniform glass plates. These were glued together on a milled aluminium former to 
ensure a precise square cross-section. The interior length of each side was equal to 
63.57 f 0.05 mm. The inner cylinder was machined from solid stainless steel to a 
uniform diameter of 31.78 i- 0.01 mm. This value was chosen to give a ratio of the 
diameter to the length of side which is equal to 0.500 & 0.001. 

The vertical extent of the flow domain was defined by the separation between two 
horizontal end-plates. These were cut from 16 mm thick pieces of PTFE and were 
made to fit closely to the outer cylinder but with a small amount of clearance at 
the rotating inner cylinder. The lower block rested on the base of the rig, while 
the upper block was supported from above by two metal rods on either side of the 
inner cylinder. The rods extended through the lid of the rig, and allowed the vertical 
separation to be varied continuously over the range (t-170 mm. The actual value 
was determined using a precision travelling telescope which measured to an absolute 
accuracy of 0.02 mm. 

The inner cylinder was supported in PTFE bearings, and was rotated by means of 
a stepping motor connected through a reduction gearbox and a pulley system. The 
driving mechanism was such that the angular speed was directly proportional to the 
frequency of the oscillator signal which was supplied to the stepping motor. This 
frequency had a stability over the course of the experiments which was better than 
0.1%. 

The flow domain was surrounded along its entire length by a Perspex container. 
This formed a sealed jacket through which thermally regulated distilled water was 
pumped at 27.3"C by a Haake temperature controller. The purpose of this was 
to ensure a constant temperature of the working fluid, and therefore a constant 
kinematic viscosity. As a further step to this effect, the flow rig was housed in a large 
cabinet in which the air temperature was held at 27°C using an electric fan heater 
connected to a mercury switch thermometer. These two thermal controls had the 
effect of holding the temperature of the working fluid constant to better than 0.02"C 
during the experiments. 

The Reynolds number for this system is defined to be Re = w r d / v ,  where w is the 
angular speed of the inner cylinder, r is the radius of that cylinder, d is the minimum 
horizontal separation between the inner and outer cylinder and v is the kinematic 
viscosity of the fluid. The high geometrical precision of the flow rig and the strict 
temperature control meant that the relative accuracy of Re was effectively determined 
only by the stability of the oscillator which supplied the driving mechanism for the 
inner cylinder. 

A second dimensionless parameter is required to characterize the state of the system. 
This is the aspect ratio r ,  defined as r = H / d .  Here, H is the perpendicular distance 
between the horizontal ends of the flow domain, and d is the minimum gap between 
the inner and outer cylinders. The value of H has already been stated to have an 
absolute error of 0.02 mm, and so for the aspect ratios which are typical for these 
experiments (i.e. r = l), this gives a relative error for r of approximately 0.1%. 
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The fluid which was used in the steady-flow experiments was a 50:50 mixture of 
distilled water and Glycerol. The kinematic viscosity was measured using a suspended- 
level viscometer, and was found to have a value of v = 5.90 * 0.01 rnm*s-l at the 
operating temperature of 27.3"C. A small quantity of flow visualization material was 
added to the fluid at a concentration of approximately 0.01%. The material was 
Mearlmaid AA natural pearl essence, which is made of tiny anisotropic platelets that 
are essentially neutrally buoyant in the working fluid. Flow structures were discerned 
by projecting a thin, vertical sheet of light through the fluid in the narrowest gap 
between the cylinders. The motion in the illuminated plane was viewed either by eye 
or through a travelling telescope with a cross-hair eye piece and an accurate Vernier 
traverse. In our experience, this global view of the flow field is the most useful way 
of studying critical phenomena in steady flows. 

However, when studying time-dependent phenomena, a laser Doppler velocimeter 
(LDV) was used to obtain quantitative information about the flow dynamics. The 
output from a 2 mW He-Ne laser was directed into a prism beam-splitter to produce 
two parallel coplanar beams of equal intensity. These then passed through Bragg cells 
which shifted the frequency of the light in each beam to give a relative difference in 
frequency of 100 kHz. The beams were then focused at their point of intersection 
to define a small measuring volume in the flow. The Doppler-shifted light which 
was scattered as seeding particles passed through this volume was detected by a 
photomultiplier. The Doppler frequency was transformed by a phase-locked loop 
circuit into a voltage which was directly proportional to the radial velocity component. 
It was important that the choice of measuring position gave dynamical information 
which was typical of the dynamics of the flow as a whole. Care was always taken 
to ensure that this was the case, and the actual measuring positions are given when 
appropriate. 

The seeding particles in this case were latex spheres with an average diameter of 
6.4 pm. They were distributed uniformly in the fluid by the action of an ultrasonic 
bath prior to the fluid being poured into the flow rig. For the studies of time- 
dependent phenomena, silicone oil or mixtures of water and glycerol were used, with 
viscosities ranging from 2 to 6 mm2s-'at 27.3"C. 

3. Bifurcation structure for steady flows 
In this section, results are presented of experiments which were carried out to 

explore the steady bifurcation structure in the square Taylor-Couette system at 
aspect ratios close to unity. To begin with, changes in the structure of the flow are 
described qualitatively for increasing values of r .  This is followed by the results 
of measurements of the critical parameter values at which bifurcations occur in the 
two-dimensional parameter space defined by Re and r . 

3.1. Bijiurcation sequence 
The bifurcation sequence which was observed experimentally is shown qualitatively in 
figure 2(a-d)  for four successively larger values of aspect ratio f ,  with the Reynolds 
number Re as the bifurcation parameter. The trivial solution branch from which the 
bifurcating branches emerge corresponds to a two-cell flow that is symmetric about 
the horizontal midplane of the domain. This is the primary mode for this particular 
range of aspect ratio. 

To begin with, the first effect of increasing Re is that a pitchfork bifurcation to 
stable single-cell flow is encountered (figure 2a). The solution which arises at this 
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FIGURE 2. Bifurcation sequence for two-cell and single-cell flows in the standard Taylor-Couette 
system. The trivial branch corresponds to symmetric two-cell flow. The aspect ratio is increasing 
from ( a )  to ( d ) ,  with the Reynolds number as the bifurcation parameter in each case. Pitchfork 
bifurcations are shown as symmetric for the sake of clarity, although they are actually asymmetrically 
disconnected by the presence of unavoidable imperfections. 

bifurcation breaks the Z2 symmetry which is imposed on the flow by the geometrical 
boundary conditions. In addition, the now unstable symmetric solution branch is 
restabilized by an unstable pitchfork bifurcation at higher Re. As the aspect ratio 
is increased, these two bifurcation points approach each other. This is accompanied 
by a change in the first pitchfork from supercritical to subcritical (figure 2b) .  At 
a critical value of aspect ratio, the two bifurcations coalesce (figure 2c). Beyond 
this point, the two single-cell solutions are disconnected from the primary branch 
(figure 2d ). It should be noted that for the sake of clarity all the pitchfork bifurcations 
in figure 2(a-d) have been drawn as symmetric. However, in practice the pitchfork 
bifurcations are encountered in disconnected form due to the small imperfections 
which are inevitable in a physical system. 

This bifurcation sequence is the same as is found for single-cell flow in the standard 
Taylor-Couette system. It was first proposed by Benjamin & Mullin (1981), who went 
on to confirm their conjecture with experimental measurements. The same bifurcation 
mechanism was found subsequently by Cliffe (1983) using numerical techniques which 
allowed both the stable and the unstable solution branches to be calculated. Part of 
the bifurcation sequence involving the change in the symmetry-breaking bifurcation 
from supercritical to subcritical was confirmed experimentally by Aitta, Ahlers & 
Cannell (1985). Most recently, Pfister et al. (1988) carried out experimental and 
numerical work on two-cell and single-cell flows in the standard Taylor-Couette 
system, and obtained excellent agreement between the two sets of data. 
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3.2. Quantitative results 

In the flow-visualization experiments, the illuminated region of the flow was observed 
through a travelling telescope with a cross-hair eye piece. In order to measure the 
critical values of Re associated with symmetry-breaking in the two-cell flow, the 
horizontal cross-hair was positioned so that it coincided with the midplane of the 
flow domain. Thus any asymmetry in the flow could be detected as a departure of 
the line of separation between the two vortices from this horizontal marker. 

A practical problem here is that, as has already been stated, the symmetry-breaking 
bifurcation is disconnected by unavoidable imperfections in the system. There is 
therefore no critical point at which symmetry is broken, but rather a continuous 
transition from symmetric to asymmetric flow. This indeterminacy in measurement 
can be overcome by focusing instead on the turning point which marks the lower 
stability limit of the disconnected solution branch. In the experiments, the Reynolds 
number was increased suddenly to give the single-cell flow which corresponded to the 
disconnected branch of the pitchfork bifurcation. Once this had been achieved, Re 
was gradually reduced until the lower limit of stability of the disconnected solution 
was encountered. Although the collapse was a subtle event, it could nevertheless be 
detected by an irreversible change in the direction of the vertical flow component at a 
representative point on the horizontal cross-hair. The procedure was repeated several 
times in order to obtain successively more accurate measurements of the critical 
Reynolds number, which was ultimately limited in accuracy by the stability of the 
oscillator controlling the speed of the inner cylinder (see $2). 

The procedure for measuring the critical point for the secondary symmetry-breaking 
bifurcation involved first establishing the stable two-cell flow at higher Reynolds 
number. This was done by sudden increase of Re to successively larger values until 
a stable two-cell flow was seen to persist. The Reynolds number was then decreased, 
and a similar refinement technique to that described above was used to locate the 
critical value of Re. Sudden starts were also used for the disconnected single-cell 
solutions until the stable single-cell flow was established, and then the Reynolds 
number was decreased to locate the lower limit of stability. In both these cases, there 
was no requirement to locate the symmetry plane since the transitions were of a much 
more definite nature than for the case of the primary symmetry-breaking bifurcation. 

The limits of hysteresis in the primary pitchfork bifurcation were also measured. 
The presence of the disconnection means that hysteresis is only exhibited in the 
primary solution branch, so the experiments could proceed without the requirement 
first to locate a disconnected solution. The method again involved placing the 
horizontal cross-wire of the telescope eye piece coincident with the symmetry plane of 
the annulus. The Reynolds number was then gradually increased from zero until the 
separating line between the two vortices suddenly departed from the horizontal cross- 
wire. This critical value corresponded to the upper turning point of the hysteresis 
region. Similarly, with sufficient decrease of Re, the flow reverted catastrophically 
back to being symmetric about the midplane. It was possible with small changes 
in Re to locate the limits of this hysteresis to the relative accuracy of the oscillator 
controlling the speed of the inner cylinder. 

A factor which had to be taken into account when carrying out all the measurements 
was the rate at which transient flow decayed when changes were made to the Reynolds 
number. It was observed that this time varied significantly depending on whether 
or not the system was close to more than one bifurcation point. For the majority 
of measurements, the decay time was found to be of the order of the timescale 
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FIGURE 3. Experimentally determined bifurcation set in the square system: AB (O),  primary 
pitchfork bifurcation to single-cell flow; CD( 0), secondary pitchfork bifurcation which restabilizes 
two-cell flow; BE(*). limit point which marks lower stability limit of disconnected single-cell flow. 
Lines are drawn purely to guide the eye. 

z = ~ / ( v o ) ' / ~  which is obtained from a simple dimensional analysis. However, for 
measurements taken when the system was close to the coalescence of the two pitchfork 
bifurcations, transient times of up to 40002 were recorded. The effect is to cause the 
system to remain for a long time in the vicinity of the unstable symmetric solution 
before collapsing to the final asymmetric state. Under these conditions, it was only 
possible to achieve repeatable results by allowing times in excess of 40002 between 
the small changes of Re which were required to locate bifurcation points accurately. 

The above considerations are consistent with results which were obtained by Pfister 
et al. (1988) for the decay of transients in the standard Taylor-Couette system. 
Time constants were measured experimentally and numerically by Pfister et al. for 
several values of the Reynolds number in the interval separating the two pitchfork 
bifurcations for the sequence equivalent to that shown in figure 2(b) .  It was found 
that the time constant has an approximately parabolic variation across the interval, 
with a minimum value halfway between the two bifurcation points. 

The loci of the three diEerent types of bifurcation which have been measured in 
the present study are shown in figure 3 .  The plot is of the two-dimensional parameter 
space defined by aspect ratio r and Reynolds number Re. The results show that the 
bifurcation sequence found in the standard system by Benjamin & Mullin also exists 
for the variant with a square outer boundary. The locus AB marks the path of the 
primary symmetry-breaking bifurcation resulting in single-cell flow. The locus CD is 
a similar path for the subcritical pitchfork bifurcation that restabilizes the symmetric 
two-cell flow. The lines are not continued beyond points A and D respectively because 
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FIGURE 4. Expanded view of parameter space around point C in figure 3 showing hysteresis in the 
primary symmetry-breaking bifurcation. 

it was at these parameter values that time-dependent effects were encountered. As r 
is increased, the lines AB and CD of critical points converge. The primary pitchfork 
bifurcation goes through a quartic point and develops hysteresis, just as was found 
by Benjamin & Mullin. This results in the splitting of the symmetry-breaking locus at 
point B in figure 3. The two subcritical points connect at point C, resulting in the full 
stabilization of the symmetric solution branch. The disconnected single-cell flow has 
a lower limit of stability represented by the limit point whose locus is the line BE. For 
consistency, these results were measured using just one of the two possible single cells. 
The locus of limit points certainly continues beyond the point E, but measurements 
were terminated at this point since there was no further qualitative change in this 
solution. 

An expanded view of the parameter space around point C is presented in figure 4, 
where the development of hysteresis and the subsequent disconnection of the single- 
cell solution can be seen more clearly. It should be noted that the range over which 
the hysteresis is present is only 0.7 mm in these experiments. Nevertheless, the details 
of the solution set over this range are essential to the understanding of the overall 
flow behaviour. 

3.3. Comparison with the standard system 
We have already seen in $3.1 that there is strong qualitative similarity between the 
steady-state bifurcation sequences found at small aspect ratios in Taylor-Couette 
systems with circular and square outer cylinders. However, it is also> possible to 
compare some quantitative aspects of the results obtained from the two systems. 

The symmetry-breaking bifurcation set for the standard system with radius ratio 
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FIGURE 5. Overlay of the results from the standard (0) and square (0) systems with radius ratios of 
q = 0.5 based on minimum separating gaps. It can be seen that the two lines of primary pitchfork 
bifurcations converge for r < 1. 

q = 0.5 has been determined experimentally and numerically by Pfister et al. (1988). 
It is therefore possible to make a direct quantitative comparison of the results of 
measurements of bifurcation points, as long as the defining lengthscale is taken as 
the gap (the minimum gap in the case of the square system) between inner and outer 
cylinders. 

An overlay of the results of the present study with those of Pfister et at. is shown 
in figure 5. The important feature to note is the strong quantitative similarity in the 
loci of the primary symmetry-breaking bifurcations for aspect ratios r < 1. This 
convergence phenomenon can be understood physically by considering the nature 
of the three-dimensional flow that is driven by the inner cylinder at small aspect 
ratios. The frictional effect on the flow of the stationary ends means that the only 
significant motion is restricted to fluid close to the rotating cylinder. Thus, prior 
to the symmetry-breaking bifurcation, the two-cell flow is confined principally to a 
region whose radial extent is approximately equal to the vertical separation between 
the end-plates. This symmetric flow undergoes bifurcation to single-cell flow where 
the single Taylor cell occupies the same region as was previously determined by the 
two-cell flow. 

A consequence of this restriction of the cellular flow to the proximity of the inner 
cylinder is that the exact details of the shape of the outer boundary become less 
significant as the aspect ratio is decreased below the value of one. Thus it is possible 
to understand how two systems, one with a circular outer boundary and the other with 
a square outer boundary, can be practically indistinguishable through experimental 



Taylor-Couette flow with discrete azimuthal symmetry 389 

FIGURE 6. Oscillatory behaviour of single-cell flow in the square Taylor-Couette system for r < 1. 
The previously steady, circular-shaped cell now oscillates between circular and oblate cross-sections. 

measurement of the critical Reynolds number for symmetry-breaking at small aspect 
ratios. 

4. Characteristics of time-dependent flows 
It has been established in $ 3  that the solution structure for steady single-cell 

flow is organized in qualitatively the same manner as for the corresponding flow 
in the standard Taylor-Couette system. We now proceed to an investigation of the 
time-dependent single-cell flow in the square system. 

Before looking in detail at the time-dependent bifurcation structure which exists in 
this problem, it is instructive to consider certain qualitative and quantitative aspects of 
the time-dependent single-cell flow. It was found that two different types of oscillatory 
behaviour are possible for single-cell flow in the square Taylor-Couette system. These 
are described below, together with data which show the onset of time-dependence to 
be the result of Hopf bifurcations. The section is concluded with a comparison with 
time-dependent single-cell flow in the standard Taylor-Couette system. 

4.1. Generat characteristics 
The first type of behaviour was encountered for aspect ratios less than one. It was 
observed in $ 3  that the steady single-cell flow for r < 1 only has significant motion 
close to the inner cylinder in a region with radial extent approximately equal to the 
vertical separation between the end-plates. When the Reynolds number was increased 
sufficiently, this steady configuration was observed to develop a time-dependent 
aspect. The region of secondary circulation which is used to define the Taylor cell 
then oscillated in a predominantly radial direction between a circular and an oblate 
shape. This behaviour is illustrated in figure 6. We define the dimensionless frequency 
of oscillation as i2 = 2 n f / ~ , ,  where f is the dimensional frequency and a, is the 
angular speed of the rotating inner cylinder. A value of i2 = 0.3 was recorded at the 
onset of this oscillation at all values of r at which it was observed. 

The second type of oscillatory behaviour occurred typically for r > 1. A cycle 
begins with the appearance of a small vortex at the inner cylinder approximately 
halfway between the horizontal ends (figure 7a). The circulation of this new vortex 
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FIGURE 7. Oscillatory behaviour of single-cell flow in the square Taylor-Couette system for r > 1 : 
( a )  a small vortex grows between the main cell and the rotating inner cylinder; ( b )  the vortex 
moves round with the prevailing secondary flow, reaching maximum strength as it moves close to 
the stationary end-plate; (c ) the vortex dissipates upon reaching the stationary outer cylinder. This 
cycle repeats with a regular period. 

is in the opposite sense to that of the main Taylor cell. Once formed, the vortex 
moves round with the main flow causing a small local deformation of the cell 
outline. The strength of the peripheral vortex reaches a maximum as it is swept 
radially outward along the end-plate (figure 7 b ) .  Finally the vortex dissipates at 
the stationary outer boundary of the flow domain (figure 7 c ) .  The dimensionless 
frequency of the oscillation at onset was measured as SZ = 0.2 over the majority of 
the aspect ratio range in which it occurred. However, it will be seen in $ 6  that the 
dynamic nature of flows for r > 1 can be highly dependent on both the aspect ratio 
and the Reynolds number. 

4.2. Identijication of simple Hoplf bifurcations 
The simple Hopf bifurcation is the most common finite-dimensional mechanism for 
the loss of stability of a steady solution to a singly periodic solution with variation 
of a control parameter p. There are two characteristic properties which hold local to 
a simple Hopf bifurcation at p = p(.  Firstly, the amplitude of the oscillation grows 
as ( p  - pC)l/*  for p > pc. Secondly, the frequency of oscillation is independent of 
p. The latter property is a consequence of a complex-conjugate pair of eigenvalues 
crossing the imaginary axis transversely as p is varied through pc. There is, however, 
a generalized Hopf bifurcation where the crossing is not transverse, and in that case 
the frequency of the oscillatory solution does depend on the bifurcation parameter. 
For details see Golubitsky & Langford (1981). 

The LDV system was used to measure the amplitude and frequency of the oscillation 
in the radial velocity component at a fixed point in the flow domain. This point was 
always located radially midway between the inner and outer cylinders where the gap 
between the two was narrowest. However, the axial position could be varied, and 
it is convenient to define a dimensionless linear axial coordinate 11 E [0,1] for the 
measuring volume. Here, h = 0 corresponds to the end-plate next to which there is 
inward radial flow, while h = 1 corresponds to the other end-plate. 

Measurements were made of the two types of time-dependent flow at h = 0.5, one set 
at r = 0.5 and the other at r = 1.5. The results are shown in figure 8 ( a - d ) .  The solid 
lines in figures 8 ( a )  and 8(c)  are least-squares fits of the form A = k(Re  - & ) I / * ,  

where A is the amplitude of the oscillation in arbitrary units and k is the fitting 
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FIGURE 8. Results of LDV measurements which show characteristic features of a Hopf bifurcation. 
( a )  Amplitude and ( b )  dimensionless frequency for r = 0.5,ReC = 587.24. (c) Amplitude and 
( d )  dimensionless frequency for r = 1.5, Re, = 452.76. 

parameter. In both cases, the fit is within the limits of experimental error. The results 
for the dimensionless frequencies of the two oscillations are shown in figures 8(b)  
and 8(d) .  The horizontal lines were obtained from linear regression performed on 
each set of data. They show that both dimensionless frequencies remain constant for 
Reynolds numbers in a range of approximately 10% of the critical value. 

Thus we see that the two characteristics of a simple Hopf bifurcation are present 
in the onset of the modes which are illustrated in figures 6 and 7(a-c) .  This has been 
shown in each case for a fixed value of aspect ratio. Results will be presented in 5 5 
of the effect of varying the aspect ratio on the critical Reynolds numbers for the two 
Hopf bifurcations. 

4.3. Temporal wavenumbers 
In addition to observing the nature of the oscillations in the profile of the single cells, 
the structure of the time-dependent flow around the annulus was also determined 
using flow visualization techniques. This was achieved by measuring differences in 
phase between planes of cross-section at different azimuthal positions. However, 
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because of the discrete symmetric nature of the flow domain it is necessary to restrict 
the concept of a wavelength to that of temporal rather than spatial periods. Thus we 
identify the azimuthal positions at which the local maxima of the oscillation occur 
simultaneously, and determine from this a temporal wavenumber k .  The results for 
the class of oscillation represented by figure 6 indicate a wavenumber k = 2, while 
those for the type in figure 7(a-c) gave k = 3. 

4.4. Comparison with the standard system 
An experimental study of the dynamics of single Taylor vortex flow in the standard 
Taylor-Couette system has been carried out by Lensch (1988). The radius ratio q 
was equal to 0.5, and the flow was driven by rotation of the inner cylinder alone. The 
height of the annulus was set by the position of two stationary horizontal end-plates. 
Aspect ratios which were studied by Lensch ranged from r = 0.4 to r = 1.3. 

The qualitative nature of time-dependent single-cell flows in the standard system 
was found to be the same as has been described above for the square configuration. 
For aspect ratios less than one, the cell profile oscillates between circular and oblate 
in a predominantly radial direction. The oscillation for r greater than one consists of 
the periodic formation of small vortices at the inner cylinder which then move round 
the outside of the main cell and are destroyed at the outer boundary. 

A quantitative comparison can be achieved by considering the respective dimen- 
sionless frequencies of each mode in the two systems. For aspect ratios less than one, 
Lensch reports a value of D = 0.3 in the standard system. This is the same as the 
value for the corresponding mode in the square system. However, the agreement does 
not persist for r > 1. A value of D = 0.06 is quoted by Lensch, whereas the modified 
system gives D NN 0.2. A possible explanation for the different values of dimensionless 
frequency for one range of aspect ratio and the agreement for another comes from 
the distinct nature of the two time-dependent modes. The oscillating single cell for 
r < 1 in both the standard and modified systems is effectively localized to a region 
of the flow domain close to the inner cylinder. It is therefore possible that this type 
of flow is insensitive to the exact details of the outer wall geometry. However, the 
oscillation for r > 1 has a strong effect on the whole flow field. Hence it is not 
surprising that a change in the shape of the outer boundary might produce a change 
in a quantitative aspect of this flow. 

A second quantitative comparison is possible in terms of the wavenumbers of 
the flows. We saw above that subject to certain qualifications about the use of a 
wavenumber in an annulus without continuous rotational symmetry, the modes for 
r < 1 and r > 1 can be labelled with wavenumbers k = 2 and k = 3 respectively. 
However, Lensch reports a value of k = 3 for r < 1 and k = 2 for r > 1 in the 
standard system. These values have been confirmed by subsequent experiments (H. 
Ropcke, private communication 1992). This is the reverse of the case for the square 
system. The reasons for the reversal are not understood at present, and this result 
clearly shows the limitation of arguments based simply on the qualitative nature of 
the single-cell flows. 

5. Elementary bifurcation structure for time-dependent flows 
We have seen in $4 that there are two qualitatively different time-dependent modes 

which can arise from the steady single-cell flow in the square Taylor-Couette system. 
These modes are the result of simple Hopf bifurcations on the asymmetric solution 
branches of the symmetry-breaking bifurcation from two-cell to single-cell flow. 
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FIGURE 9. Parameter-space diagram showing experimentally determined lines of bifurcations. Dotted 
line is locus of symmetry-breaking bifurcations to steady single-cell flow. ABC (0) and DE ( 0 ) :  

Hopf bifurcations. FGH (x) :  limits of hysteresis between circular and extended cell. JKL: 
Hopf (A)-inverse Hopf (V) isola. MD (x): limit points. ND (0): homoclinic bifurcations. 

Careful experimental investigation has revealed a detailed but self-consistent dynamic 
bifurcation structure in this problem. The individual elements of this structure are 
shown together in the bifurcation set of figure 9, and are discussed separately below. 
This is followed by a comparison with the bifurcation structure which is known to 
exist in the standard system. 

5.1. Bifurcation structure for r < 1 
The lines ABC and DE in figure 9 are the loci of Hopf bifurcations leading to the 
k = 2 and k = 3 modes respectively. The dotted line marks the path of the primary 
symmetry-breaking bifurcation from two-cell to single-cell steady flow. We will refer 
to the aspect ratio which corresponds to a point P as r p .  In this notation, r A  was the 
smallest value at which the LDV system could be operated, while r~ was the chosen 
limit beyond which the locus was not followed. 

The locus ABC of Hopf bifurcations was found to terminate at point C as the result 
of a hysteretic transition involving a novel form of single-cell fiow. It was observed in 
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FIGURE 10. Bifurcation diagram for the transition between circular and extended forms of steady 
single-cell flow. Solid lines represent stable solutions, while the dashed line indicates an unstable 
solution. The quantity f is any linear functional which discriminates between the two types of flow. 
Experimentally, this was taken as the radial velocity component at a point in the domain. 

$ 3  that the steady single cell which first develops at the symmetry-breaking bifurcation 
for r < 1 has an approximately circular cross-section and is limited in the radial 
direction to a region close to the rotating inner cylinder. However, the new single-cell 
flow is different in that it extends to fill the full radial extent of the flow domain. 
A possible bifurcation sequence which describes the exchange between the two flows 
is shown in figure 10. This has the form of two limit points which are connected 
by an unstable solution branch. The circular cell persists with increase of Re until 
the bifurcation at Rel is encountered. The flow then changes catastrophically to the 
extended form of the single cell. The reverse transition occurs upon decreasing Re to 
the point Re2, where Re2 is less than Rel. Qualitatively identical bifurcation sequences 
were found to exist on both the asymmetric branches of the pitchfork bifurcation 
from two-cell to single-cell flow. Measurements were always made on the connected 
branch for the sake of consistency. 

Results of LDV measurements of the hysteretic transition over a range of aspect 
ratio are shown in figure 9. The locus FGH of critical points forms a standard 
hysteresis cusp in parameter space. For aspect ratios between Tc and Tc,  the steady 
circular single-cell flow persists until the line CG is crossed from below. The flow 
then evolves to the extended form of the single cell, and remains so until the line F G  
is crossed from above. The upper and lower limits of the hysteresis region coincide at 
the point G, where Tc = 0.95. This convergence can be understood in terms of the 
progressive lack of distinction between the two types of single-cell flow as the aspect 
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ratio is increased towards one. It should be noted that no such hysteresis transition 
has been observed in the single-cell flow in the standard Taylor-Couette system. 

Thus there is a codimension-2 bifurcation formed near the point C, where a Hopf 
bifurcation and a limit point occur simultaneously. However, it proved impossible to 
locate the codimension-2 bifurcation point exactly because of the sensitivity of the 
system to small changes in the control parameters in the region where the two lines 
of bifurcations are close together. 

For aspect ratios less than Tc, the effect of increasing the Reynolds number beyond 
the Hopf bifurcation at BC is that a limit point is encountered. The k = 2 oscillatory 
form of the circular cell persists with unchanged dimensionless frequency until a 
critical value of Re is reached, at which point there is a catastrophic collapse to 
the extended single-cell flow. The experimentally determined locus CH of these limit 
points is shown in figure 9. Once achieved, the extended single-cell flow does not 
revert to the circular form until the line FG of limit points is crossed from above. 

A complicating factor in the hysteretic transition from both the steady and the 
time-dependent circular cell to the extended cell is that the latter flow is typically 
encountered in a time-dependent form. The bifurcation diagram was explored at a 
fixed value of the aspect ratio. This revealed the existence of two Hopf bifurcations 
on the upper solution branch corresponding to the extended single cell. The time- 
dependent solution exists as an isola on the solution branch, with inward-facing Hopf 
bifurcations at each end. Thus the steady extended cell can be restabilized from its 
time-dependent form by either increasing or decreasing the Reynolds number. 

Measurements of the critical Reynolds numbers of the two Hopf bifurcations were 
made over a range of aspect ratio. The results are shown in figure 9 as the locus JKL, 
and thus the point K is an isola formation point in parameter space. The extended 
single-cell flow is time-dependent for all parameter values within the region defined 
by the line JKL. The proximity of the locus JK of Hopf bifurcations to the locus FG 
of limit points, which mark respectively the upper and lower limits of stability of the 
extended cell, shows that there is only a narrow range of parameter values at which 
the steady flow can be observed experimentally at the lower end of the time-dependent 
isola. 

The dimensionless frequency of the oscillation in the extended single-cell flow was 
found to have a value of SZ = 0.04 over the range of aspect ratio which was considered. 
This is in contrast to the value of a = 0.3 which is associated with the time-dependent 
circular cell. Observation of the spatial structure of the oscillating extended cell using 
flow visualization revealed a cycle which was reminiscent of the time-dependent flow 
found in general for aspect ratios greater than one. There was the periodic formation 
of a small vortex between the inner cylinder and the main cell. This vortex then 
moved around the outside of the extended cell, but now in the opposite direction to 
the main circulation. This is in contrast to the time-dependent sequence shown in 
figure 7(a-c)  for r > 1, where the peripheral vortex moves in the same direction as 
the circulation. 

5.2. Bifurcation structure for r > 1 
For aspect ratios just less than To,  observations were made of homoclinic phenomena. 
A homoclinic orbit in phase space is one which asymptotically approaches the same 
fixed point as time t --+ +a. In the context of a dynamical system, this is when 
the period of an oscillatory solution becomes infinite with variation of one or more 
control parameters. In an experimental situation, obviously no oscillation can be 
observed which has infinite period. Rather, a system is said to be approaching a 
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FIGURE 11. Variation of the dimensionless frequency of oscillatory single-cell flow with aspect ratio 
as the locus DN of homoclinic bifurcations (figure 9) is approached. The Reynolds number is held 
fixed at Re = 900. 

state of homoclinicity when the period of an oscillation is far in excess of the typical 
timescale of the problem. A careful investigation of such flow phenomena was made 
for aspect ratios just less than To. 

The line MD in figure 9 is a locus of sudden transitions from steady to time- 
dependent flow with increase of Reynolds number. The oscillation appeared with 
non-zero amplitude as the line MD was crossed from below. Once established, the 
oscillation was found to persist with decrease of Re to a value which was slightly 
lower than the value associated with the critical point for the onset of the oscillation. 
The approach towards the lower limit of stability was accompanied by a continuous 
drop in the value of the dimensionless frequency, indicating that the oscillation 
was becoming homoclinic. The locus of homoclinic bifurcations back to steady 
flow is shown in figure 9 as the line ND. It should be noted that these two lines 
of bifurcations exist in close proximity in parameter space. Careful experimental 
procedure was therefore required in order to make measurements of the respective 
critical points. Nevertheless, it proved impossible to resolve the small amount of 
hysteresis which almost certainly exists close to the point D. 

The loci M D  and ND both rise steeply in the given representation of parameter 
space. The critical points were therefore much more easily investigated by fixing the 
Reynolds number and varying the aspect ratio. The variation of the dimensionless 
frequency as the locus ND of homoclinic bifurcations was approached in this way 
is shown in figure 11 for Reynolds number Re = 900. Here we can see clearly 
the continuous decrease in dimensionless frequency over a narrow range of control 
parameter which is characteristic of an impending homoclinic bifurcation. 

5.3. Comparison with the standard system 
Results for the bifurcation structure of time-dependent single-cell flow in the standard 
Taylor-Couette system have been presented by Lensch (1988) and Pfister, Schulz & 
Lensch (1991). In both cases, experiments were carried out in a system with radius 
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ratio y = 0.5, and with the outer cylinder and the end-plates all stationary. We will 
restrict ourselves here to a qualitative consideration of the results, and refer to the 
appropriate references for the full details. 

For aspect ratios less than one, there is a locus of Hopf bifurcations to the 
k = 3 mode (the wavenumbers being the reverse of the case in the square system) 
which is qualitatively similar to that found in the square system. This locus is also 
terminated by the upper limit of a hysteresis region, but the hysteresis is now that of 
a subcritical Hopf bifurcation to the k = 2 mode. At larger values of aspect ratio, 
the bifurcation structure is dominated by homoclinic phenomena. The loci of critical 
points in parameter space are different from those obtained from the square system, 
and involve eventually a type-I1 intermittent transition to chaos. 

Thus we see again the tendency for similar behaviour in the standard and square 
systems when the aspect ratio is less than one, and any significant flow is confined 
near the inner cylinder. However, as the aspect ratio is increased and the oscillation 
influences more of the flow domain, the effect of the shape of the outer boundary 
becomes more pronounced. There is then a divergence in behaviour. Nevertheless, 
it remains the case that the dynamics in both systems are described in the context 
of low-dimensional dynamical systems. Thus while the precise details of the time- 
dependent behaviour may change in going from continuous to discrete azimuthal 
symmetry, the fundamental nature of the dynamics does not. 

6. More complicated dynamical phenomena 
The results which were presented in $ 5  show that, just as was the case in $ 3  

for steady flows, the time-dependent single-cell flows in the square Taylor-Couette 
system are organized in terms of simple bifurcations which are well understood 
from the study of nonlinear dynamical systems. We proceed now to consider results 
which show a more complicated dynamical flow behaviour that is similar to a low- 
dimensional mechanism found in a Taylor-Couette system with continuous S O ( 2 )  
azimuthal symmetry. 

The results as shown in figure 9 suggest that the effect of varying the aspect ratio 
such that the locus DE is followed would give rise to a monotonic change in the 
critical Reynolds number associated with the Hopf bifurcation. However, a plot of 
the dimensionless frequency of the oscillation at its onset versus aspect ratio indicates 
that the behaviour is more complicated than this. It can be seen in figure 12 that for 
aspect ratios greater than r = 1.235, the dimensionless frequencies are of the order 
i2 = 0.2. However, there appears to be a discontinuous change in the value of Q at 
r = 1.235. For aspect ratios below this value, the frequency drops suddenly to the 
order of i2 = 0.01. The presence of such a change requires explanation, and it will 
be shown that the answer is to be found in the detailed bifurcation structure which 
manifests itself at values of the aspect ratio around r = 1.235. 

6.1. Qualitative considerations 
Flow visualization experiments revealed qualitatively different behaviour in the time- 
dependent flows on either side of the discontinuous change in dimensionless frequency. 
For the higher-frequency mode (r > 1.235), the cycle is the same as that illustrated 
in figure 7(a -c ) .  Small vortices are formed at the inner cylinder and move round in 
the same direction as the prevailing secondary flow. However, for the lower-frequency 
mode (r < 1.235), the difference is that the peripheral vortices now move in the 
opposite direction. This is the same behaviour that was found for the time-dependent 
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FIGURE 12. Plot of dimensionless frequency at the onset of oscillation along the line DE of Hopf 
bifurcations in figure 9. 

form of the extended single-cell flow for r < 1, in the region of parameter space 
contained by the locus JKL in figure 9. Thus it is reasonable to conclude that the 
Hopf bifurcation which is encountered for aspect ratios just below r = 1.235 is the 
same Hopf bifurcation which is found at the values of r associated with the extended 
single cell. 

6.2. Detailed bifurcation structure 

We now wish to change from considering the relatively wide range of parameter space 
which is shown in figure 9, to focusing our attention on a narrow section centred on 
r = 1.24. A magnified parameter-space diagram is shown in figure 13 containing 
features of a more detailed nature which were uncovered as a consequence of refined 
experiments. These new features are discussed individually below. 

It was found that there is in fact a multiplicity of time-dependent single-cell flows, 
with both the modes being observed at the same set of control parameters. We 
will adopt the nomenclature introduced by Benjamin (1978) to describe the relative 
characteristics of the two modes. A mode which results from the quasi-static variation 
of only one control parameter through one or other of the Hopf bifurcations will 
be referred to as the primary mode. The other mode, which is necessarily realized 
by variation of both parameters or by a sudden change in one of them, will be 
referred to as the secondary mode. Thus for r > 1.235, the primary mode is the 
higher-frequency oscillatory flow and the secondary mode is the lower-frequency flow. 
For r < 1.235, the roles of the two modes are reversed. 

A characteristic feature of a secondary mode is that it is terminated by a turning 
point and thus has a lower limit of stability. This is indeed found to be the case 
for both the higher- and lower-frequency secondary modes in the present study. The 
secondary modes collapse catastrophically at a critical set of control parameters, and 
the system reverts to the dynamics of the appropriate primary mode. The lower 
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stability limits of the two secondary modes were measured experimentally over a 
range of aspect ratio using the LDV system. The results are shown in figure 13. 
The locus PQ represents the lower stability limit of the lower-frequency mode, while 
the locus PR is that of the higher-frequency mode. Thus it can be seen that what 
appeared initially in figure 9 as a single line of critical points is in fact two different 
lines which intersect at r = 1.235. 

The effect of increasing the Reynolds number was investigated with regard to the 
higher-frequency mode which arises at the locus PE of Hopf bifurcations. The result 
was that a secondary Hopf bifurcation was encountered. This is a bifurcaticn from a 
singly periodic mode to a doubly periodic mode, which is an oscillation comprising 
two distinct frequency components. Time-series consist of the original oscillation with 
a regular modulation of the amplitude envelope. An example of this behaviour is 
shown in figure 14. 

The variation of the critical Reynolds number for the secondary Hopf bifurcation 
was investigated over a range of aspect ratio. The results are shown in figure 13 as the 
locus ST, where the point T was the chosen upper limit on the range of measurement. 
The significant feature of these results is that they indicate an intersection of the 
line of secondary Hopf bifurcations with the locus RP of periodic folds which marks 
the lower stability limit of the singly periodic mode. Thus there is a probable 
codimension-2 bifurcation in parameter space, close to the point S, where a periodic 
fold and a secondary Hopf bifurcation occur simultaneously. The exact position 
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FIGURE 14. Example of modulated oscillatory behaviour as the result of a secondary Hopf 
bifurcation. Recorded at measuring position h = 0.53 with r = 1.28, Re = 677.24. 

of this bifurcation could not be determined experimentally because of the extreme 
sensitivity of the system to changes in the control parameters as the locus RP of folds 
is approached. The point S represents the closest position which was attainable with 
the present system, whose main limitation was the degree to which the aspect ratio 
could be varied without causing an excessive perturbation to the flow. Nevertheless, 
the experimental results suggest that the locus ST intersects the locus RP. This is 
further attested to by the fact that the section of the locus RP above the point S marks 
the lower stability limit of the doubly periodic mode. The modulated oscillation was 
found to persist with decrease of r until this upper section of the line RP was crossed. 
The flow then collapsed catastrophically to the singly periodic lower-frequency mode 
which originates at the Hopf bifurcation indicated by the locus DP in figure 13. 

6.3. Dynamical behaviour of the Sil’nikov type 
The final stage of this study involved increasing the Reynolds number from the 
secondary Hopf bifurcation which occurs at the line ST in figure 13. The aim was to 
explore further into the nonlinear regime and test if the low-dimensional nature of 
the flow dynamics would persist or be replaced by more complicated effects. 

The effect of increasing Re  was investigated for a fixed value of aspect ratio, 
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FIGURE 15. Section of a time-series recorded at measuring position h = 0.79 with r = 1.25, 
Re = 766.07. The mode comprises a low-frequency oscillation which is punctuated regularly by 
high-frequency intervals. 

r = 1.25. The flow remained qualitatively unchanged in the modulated oscillatory 
state until Re = 766. At that point, the previously regular modulated behaviour 
developed an irregular aspect. After a transient time corresponding to approximately 
2400 revolutions of the inner cylinder, the flow was observed to change to a new 
dynamic state. This is illustrated by the time-series which is shown in figure 15. It is 
clear that there are two elements to this particular flow. There is a lower-frequency 
oscillation together with a higher-frequency component which is visible at intervals 
throughout the time-series. This behaviour was found to persist for at least lo5 
rotations of the inner cylinder. In addition, it was possible to establish such a flow 
repeatedly by starting the system from rest and gradually increasing the Reynolds 
number to the present value. Thus it was concluded that the motion being observed 
was a stable and persistent feature. 

The time-series of which a section is shown in figure 15 was used to obtain 
a reconstructed phase-space representation of the dynamics. This was performed 
computationally using the method of delays combined with singular value decom- 
position (SVD) as developed originally by Broomhead & King (1986). The result 
is a set of trajectories in phase space, known as a phase portrait, along which time 
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FIGURE 16. Phase-space reconstruction using the time-series of which a section is shown in figure 15. 
Trajectories are drawn as ribbons in order to depict the three-dimensional structure of the object. 

is a parameter. The phase portrait which was obtained in this case is shown in 
figure 16. The motion takes place on a distorted torus which has a narrow central 
core. The core begins at the far end of the torus, where the high concentration 
of points indicates that the system spends a relatively long period of time in this 
region. Such behaviour suggests the presence of a weakly unstable fixed point, with 
an unstable direction along the core of the torus. At the near end, the motion appears 
to become unstable to perturbations in a plane approximately perpendicular to the 
core. Individual trajectories can be seen to spiral outward initially, and then wind 
back towards the far end of the object. A feature of this return mechanism is the 
high concentration of orbits just before the trajectories return to the weakly unstable 
fixed point. There is the suggestion of a weakly unstable limit cycle around the core 
which causes the system to spend a disproportionate length of time in its vicinity. 

The significance of the above observations is two-fold. Firstly, a similar type of 
dynamical behaviour was observed experimentally by Mullin & Price (1989) while 
investigating a different Taylor-Couette problem. They considered flow between 
two concentric circular cylinders where the inner cylinder and the end-plates rotated 
together. The symmetries were thus a continuous S O ( 2 )  group around the annulus 
and a discrete Z2 mirror symmetry about the midplane of the annular gap. The 
particular mode which was studied was a time-dependent four-cell flow which had 
undergone a symmetry-breaking bifurcation with respect to the Z2 group. Time-series 
presented by Mullin & Price show a higher-frequency component which appears in 
short bursts, separated by relatively long quiescent phases. The phase portrait, which 
was reconstructed using the same techniques which were employed in the present 
study, shows the same type of structure as in figure 16. There is a central core 
of trajectories with a spiraling motion around the outside. More recently, similar 
dynamical behaviour has been observed experimentally in a system where only one of 
the two end-plates rotates with the inner cylinder, thereby removing the Z2 midplane 
symmetry (V. Heinrich, private communication 1993). 



Taylor-Couette flow with discrete azimuthal symmetry 403 

The second point of significance is that the present results and those obtained by 
Mullin & Price are highly reminiscent of behaviour exhibited by a nonlinear finite- 
dimensional dynamical system first studied by Sil'nikov (1965). A detailed description 
of this system is given by Guckenheimer & Holmes (1986), and we consider here only 
the essential elements. It involves a saddle point in three-dimensional phase space 
where the stable manifold is a spiral on a sheet and the unstable manifold is a line 
perpendicular to the sheet. Trajectories spiral inwards and are eventually ejected out 
of the plane, only to return along the stable manifold. This system is capable of 
supporting homoclinic orbits, which correspond to closed trajectories that asymptote 
to the saddle point as t + +m. A bifurcation parameter controls the proximity of 
the system to a homoclinic orbit. A feature of varying this parameter is that forward 
and inverse cascades of period-doubling bifurcations are encountered, as shown by 
Glendinning & Sparrow (1984). 

The oscillatory flows in the square system and in the system with SO(2) symmetry 
both occur with periods which are long in comparison to the basic timescale of the 
problem. This may be taken as an indication of each system being near a state of 
homoclinicity. In addition, Mullin & Price showed that a small change in one of the 
control parameters (they varied the aspect ratio by 0.14%) results in a transition from 
regular dynamics to an irregular regime where the higher-frequency bursts arrive at 
varying intervals. Although in the present case the dynamics were only observed in 
a regular state, it was also found that the mode existed in only a small region of 
parameter space. Therefore it is possible that the system was not sufficiently close to 
homoclinicity to allow a transition to irregular behaviour to be observed, and that a 
greater degree of control over the governing parameters is needed to resolve events 
which occur close to the stability limits of this particular flow. 

7. Conclusions 
In recent years, the standard Taylor-Couette system with continuous SO(2) az- 

imuthal symmetry has become a powerful tool for investigating the role which 
low-dimensional dynamics have to play in explaining the onset of disorder in the 
motion of a fluid. With the present study, it is hoped that a step has been taken 
towards generalizing this approach to a wider class of fluid flow problems. Specifi- 
cally, the results which have been presented here may be taken as a body of evidence 
in support of the structural stability of low-dimensional dynamics under the change 
from continuous SO(2)  symmetry to discrete Z4 symmetry azimuthally. 

The philosophy has been to restrict the extent of the flow domain in the axial 
direction, thereby minimizing the multiplicity which is inherent in the solution set. 
Typically the flow consisted of only a single Taylor cell. Such a flow has been studied 
previously in the standard Taylor-Couette system, and so can be taken as a source 
of comparison when the outer circular cylinder is replaced by one with square cross- 
section. Previous studies of flows in this square configuration have been carried out 
at larger aspect ratios. However, the results which were obtained in those studies 
suffered from complicating factors which almost certainly arose as a result of the 
increased multiplicity of flows. By studying single-cell flow, it has proved possible to 
avoid those extra complications and hence investigate detailed phenomena which are 
essential to the problem. 

A feature of previous research into the Taylor-Couette problem has been the 
extent to which progress has been made through a combination of careful experi- 
mentation and computation. In the latter case, the problem is formulated in terms 
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of axisymmetric flow, and numerical bifurcation techniques such as path following 
and centre-manifold reduction are used to construct efficient computational schemes. 
The present results now raise the possibility of performing similar calculations for 
the square Taylor-Couette system. Although the flows here are three-dimensional 
as a result of the discrete azimuthal symmetry, we have seen that both steady and 
time-dependent flows are organized by simple bifurcation structures. Thus it ought 
to be possible to extend existing numerical bifurcation techniques and obtain results 
which could be compared with the experimental data that have been presented. 

The observation of dynamics in $he square Taylor-Couette system which are 
suggestive of the finite-dimensional Sil’nikov mechanism is considered to be most 
important. Similar behaviour has been observed by Mullin & Price (1989) in the 
standard system. These results were viewed as providing strong evidence for a 
connection between the Navier-Stokes equations for fluid motion and properties of 
finite-dimensional dynamical systems. However, this was qualified by the fact that the 
continuous azimuthal symmetry makes for a highly non-generic fluid flow problem. 
Now we have such behaviour apparently persisting in a system with discrete azimuthal 
symmetry. Thus we may begin to look upon finite-dimensional systems such as the 
Sil’nikov mechanism as being more robust and wide-spread in fluid dynamics than 
was thought up to now. 

The authors wish to express their sincere thanks to Mr K. Long for his technical 
assistance throughout the course of the experimental work. This research was funded 
by the SERC (UK) through the Nonlinear Initiative and through a postgraduate 
studentship (J.J.K.). 

REFERENCES 

AITTA, A,, AHLERS, G. & CANNELL, D. S. 1985 Tricritical phenomena in rotating Couette-Taylor 

BENJAMIN, T. B. 1978 Bifurcation phenomena in steady flows of a viscous liquid. 1. Theory 2. 

BENJAMIN, T. B. & MULLIN, T. 1981 Anomalous modes in the Taylor experiment. Proc. R. Soc. 

BROOMHEAD, D. S. & KING, G. P. 1986 Extracting qualitative dynamics from experimental data. 

CLIFFE, K. A. 1983 Numerical calculations of two-cell and single-cell Taylor flows. J .  Fluid Mech. 

CLIFFE, K. A,, KOBINE, J. J. & MULLIN, T. 1992 The role of anomalous modes in Taylor-Couette 
flow. Proc. R. Soc. Lond. A 439, 341-357. 

CRAWFORD, J. D., GOLUBITSKY, M., COMES, M. G. M., KNOBMCH, E. & STEWART, I. N. 1991 
Boundary conditions as symmetry constraints. In Singularity Theory and its Applications: 
Warwick 1989, Part II (ed. R. M. Roberts & I. N. Stewart). Lecture Notes in Mathematics, 
vol. 1463. Springer. 

DIPRIMA, R. C. & SWINNEY, H. L. 1981 Instabilities and transition in flow between concentric 
rotating cylinders. In Hydrodynamic Instabilities and the Transition to Turbulence (ed. H. L. 
Swinney & J. P. Gollub). Topics in Applied Physics, vol. 45. Springer. 

GLENDINNING, P. & SPARROW, C. 1984 Local and global behaviour near homoclinic orbits. J .  Statist. 

GOLUBITSKY, M. & LANGFORD, W. F. 1981 Classification and unfoldings of degenerate Hopf 

GUCKENHEIMER, J. & HOLMES, P. 1986 Nonlinear Oscillations, Dynamical Systems and Bifurcations 

flow. Phys. Rev. Lett. 54, 673-676. 

Experiments. Proc. R. Soc. Lond. A 359, 1 4 3 .  

Load. A 377, 221-249. 

Physica 20D, 217-236. 

135, 219-233. 

Phys. 43, 479-488. 

bifurcations. J .  Difs Eqns 41, 375415. 

of Vector Fields, 2nd edition. Springer. 



Taylor-Couette $ow with discrete azimuthal symmetry 405 

LENSCH, B. 1988 Uber die Dynamik der Einwirbelstromung im Taylor-Zylinder. Diplomarbeit, 

MULLIN, T. 1993 Chaos in fluid dynamics. In The Nature of Chaos (ed. T. Mullin). Oxford University 

MULLIN, T. & LORENZEN, A. 1985 Bifurcation phenomena in flows between a rotating circular 

MULLIN, T., LORENZEN, A. & PFISTER, G. 1983 Transition to turbulence in a non-standard rotating 

MULLIN, T. & PRICE, T. J. 1989 An experimental observation of chaos arising from the interaction 

PFISTER, G., SCHMIDT, H., CLIFFE, K. A. & MULLIN, T. 1988 Bifurcation phenomena in Taylor- 

PFISTER, G., S ~ U L Z ,  A. & LENSCH, B. 1991 Bifurcations and a route to chaos of an one-vortex-state 

SIL’NIKOV, L. P. 1965 A case of the existence of a denumerable set of periodic motions. Sou. Math. 

SMITH, G. P. & TOWNSEND, A. A. 1982 Turbulent Couette flow between concentric cylinders at large 

SNYDER, H. A. 1968 Experiments on rotating flows between noncircular cylinders. Phys. Fluids 11, 

University of Kiel, Germany. 

Press. 

cylinder and a stationary square outer cylinder. J .  Fluid Mech. 157, 289-303. 

flow. Phys. Lett. A 96, 236-238. 

of steady and time-dependent flows. Nature 340, 294-296. 

Couette flow in a very short annulus. J .  Fluid Mech. 191, 1-18. 

in Taylor-Couette flow. Euro. J .  Mech. BfFluids 10, 247-252. 

Dokl. 6, 163-166. 

Taylor numbers. J .  Fluid Mech. 123, 187-217. 

1606-1 6 1 1. 




